This lecture we will practice some Basic MATLAB Scripts.
We will start with simple scripts and will discuss some electrical engineering applications.
Program to calculate Electricity bill.
w = input('Enter power of your device (in watts): ');
h = input('Enter time (in hours): ');
r = input('Enter electricity rate (in dollars per KWH): ');
ec = w * h/1000 * r;
disp(’Your Electricity bill is’)
Disp(ec)
Power transfer vs Load resistance curve
RL = 1:0.01:10;
Vs = 12;
Rs = 2.5;
P = (Vs^2*RL)./(RL+Rs).^2;
plot(RL,P)
xlabel('Load resistance')
ylabel('Power dissipated')
Torque-Speed Curve for a squirrel cage Induction Motor

Ns=1500; % Synchronous speed;
R1=15.6 ;R2=14;X1=18; X2=23;Xm=260;Vt=400/sqrt(3);
s = 0.002:0.002:1; % vector of slip
N = Ns.*(1-s); % Speed, in RPM
Ws = 2*pi*Ns/60; % Synchronous speed in rad/sec
Rr = R2./ s; % Rotor resistance
Zr = j*X2 + Rr; % Total rotor impedance
Za = j*Xm*Zr./(j*Xm+Zr); % Air-gap impedance
Zt = R1 + j*X1 +Za; % Terminal impedance
Ia = Vt ./ Zt; % Terminal Current
I2 = j*Xm*Ia./(j*Xm+Zr); % Rotor Current
Pag = 3* (abs(I2)).^2.*Rr; % Air-Gap Power
Pm = Pag.* (1-s); % Converted Power
Trq = Pag/ Ws; % Developed Torque
subplot(2,1,1)
plot(N, Trq)
xlabel('Speed in RPM')
ylabel('Torque (Nm)')
subplot(2,1,2)
plot(Ia, Trq)
xlabel('Load Current')
ylabel('Torque (Nm)')
This lecture we will practice some Basic MATLAB Scripts.We will start with simple scripts and will discuss some electrical engineering applications.
w = input('Enter power of your device (in watts): ');
h = input('Enter time (in hours): ');
r = input('Enter electricity rate (in dollars per KWH): ');
ec = w * h/1000 * r;
disp(’Your Electricity bill is’)
Disp(ec)
Power transfer vs Load resistance curve
RL = 1:0.01:10;
Vs = 12;
Rs = 2.5;
P = (Vs^2*RL)./(RL+Rs).^2;
plot(RL,P)
xlabel('Load resistance')
ylabel('Power dissipated')
Torque-Speed Curve for a squirrel cage Induction Motor

Ns=1500; % Synchronous speed;
R1=15.6 ;R2=14;X1=18; X2=23;Xm=260;Vt=400/sqrt(3);
s = 0.002:0.002:1; % vector of slip
N = Ns.*(1-s); % Speed, in RPM
Ws = 2*pi*Ns/60; % Synchronous speed in rad/sec
Rr = R2./ s; % Rotor resistance
Zr = j*X2 + Rr; % Total rotor impedance
Za = j*Xm*Zr./(j*Xm+Zr); % Air-gap impedance
Zt = R1 + j*X1 +Za; % Terminal impedance
Ia = Vt ./ Zt; % Terminal Current
I2 = j*Xm*Ia./(j*Xm+Zr); % Rotor Current
Pag = 3* (abs(I2)).^2.*Rr; % Air-Gap Power
Pm = Pag.* (1-s); % Converted Power
Trq = Pag/ Ws; % Developed Torque
subplot(2,1,1)
plot(N, Trq)
xlabel('Speed in RPM')
ylabel('Torque (Nm)')
subplot(2,1,2)
plot(Ia, Trq)
xlabel('Load Current')
ylabel('Torque (Nm)')







